

A Longitude Analysis on Bitcoin Issue Repository

Chelsea Hinds-Charles, Jenelee Adames, Ye Yang
School of Systems & Enterprises
Stevens Institute of Technology

Hoboken, New Jersey, USA
{chindsch, jadames, yyang4}@stevens.edu

Yusong Shen, Yong Wang
Department of Computer Science and Technology

Ocean University of China
Qingdao 266100, China

{shenyusong, wangyong}@ouc.edu.cn

Abstract—As one of the most successful Blockchain systems,
Bitcoin evolved over the past 8 years. The collaborative contribution
of its online software development community gradually shaped the
functionality and performance of Bitcoin. To date, most discussions
around Bitcoin are from technologies underlying the product, as well
as market applications. There are very few studies on the
development and evolution processes of the Bitcoin software. It is
important to investigate on such developmental issues, in order to
better understand the development methodologies and lessons learnt
from such a spearheaded Blockchain system. This paper serves this
purpose by examining the issues data extracted from the Bitcoin
GitHub repository from 2011 to 2018. It reports the trends of the
major development issues from a longitude perspective. The main
results include: 1) the average lifespan of an issue in Bitcoin issue
repository is approximately 57 days; and 2) the Top-7 issue types
including refactoring, tests, doc, RPC.REST.ZMQ, GUI, bugs, and
wallet, accounting for 64.3% of all issues; 3) topic modeling
techniques are beneficial in mining popularity and evolution of key
issue topics and most problematic architecture components. Using
data analysis and visualization techniques, this paper suggests the
insights for significant development decisions such as better
managing issue repository and strategic allocating of bug resolution
effort.

Keywords—Bitcoin, Blockchain, Issues, GitHub Repository,
Open Source, Software Engineering

I. INTRODUCTION

One of the most pivotal innovations of the 21st Century is
the Bitcoin, also known as “digital gold”. It is changing the
way people think about money and how businesses operate all
around the world. Currently, Bitcoin is being used for
e-commerce, gaming, publishing, micro-transactions, and
other online payments [5]. Bitcoin is referred to as a type of
digital currency known as cryptocurrency. It operates on a
decentralized peer-to-peer networked program without the
need of a bank or a third-party regulator. The underlying
technology behind Bitcoin is Blockchain. Blockchain is the
digital ledger of transactions that exists as a shared and
continually reconciled database [5]. The Blockchain database
or network is not stored in any single location, meaning the
records it keeps are truly transparent, easily verifiable and
unalterable. Bitcoin has publicized Blockchain to extreme
lengths and it is important to gain as much knowledge and
understanding of the future of Blockchain because it will
influence banks, purchases, supply chain management, and the
global markets. All this will have an impact on regulations and
transparency within businesses relationships.

In efforts of learning the development trends, a clear
understanding of the development process is necessary.
Bitcoin development is agile. The development team uses the
web-based open-source hosting software as the development
repository called GitHub. This allowed for continuous system
builds, continuous integration, and greater productivity. The
repository development team included a distribution of the
developers who were either contributors, members, owners
and in some cases have no ties to the repository. Through
GitHub, the development team tracked development tasks and
enhancements through the issues functionality. With a
development team spanning time zones and languages, the
issues tracking covered all of the repository communications.

With Bitcoin becoming widely used across industries, it is
beneficial to understand the development challenges of the
product. Therefore, the problem at hand is to identify the
prevalent issues within the system development, to gain
insights of the trends of the prevalent issues within the Bitcoin
infrastructure, and to know if there are any correlation
between the bitcoin development and the bitcoin stock prices.

II. RESEARCH DESIGN

A. PROBLEM STATEMENT
With Bitcoin becoming widely used across industries, it

would be in our benefit to better understand the development
process and challenges of the product. Therefore, the problem
at hand is to understand the issues conveyed in the Bitcoin
system GitHub repository, to gain insights on the evolution of
Bitcoin infrastructure and features, in order to identify popular
trends, and predict future research directions to improve the
product quality, as well as technology market predictions.

B. GOAL-QUESTION-METRIC FRAMEWORK

The Goal Question Metric (GQM) approach is adopted to
formulate research questions and necessary data metrics [3]. It
consists of three parts. First, the target goals for the analysis
need to be identified. In this case, the customer is anyone
interested in learning about Bitcoin and Blockchain
technology. Once the goals have been established, the second
part is to determine questions that will help characterize the
achievement of the goals. And finally, define the metrics that
will provide a quantitative answer to each question.

The goal in this study is to understand the challenges,
issues and development changes of Bitcoin from a longitude
perspective. For this purposes of this paper, the focused

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

212

978-1-5386-4870-4/18/$31.00 ©2018 IEEE

remained on high-level repository metrics and metrics on a
component basis. For the selected components, the goal was to
understand the characteristics of the issues which would give
insight on the development process of the respective
architectural component. Next, various questions were
determined to develop the metrics. For example, one question
which was determined to characterize the development of the
system of systems is: What is the average lifespan of an issue
within the repository? The same question was applied on a
component level, such as: What is the average lifespan of an
issue within the respective selected components?

The final step was coming up with metrics to answer each
question of the model. The metrics results are discussed in the
empirical results, with the component metrics details in Table
3. However, the full proposed metric details of each goal are
omitted due to the space limit.

C. BITCOIN ISSUE DATASET

The dataset used for this project was the issues from the
Bitcoin GitHub repository. The issues included open and
closed issues from 2011 through to 2018. In order to collect
the issue data, the team used the GitHub API. After obtaining
the data in the appropriate excel format, the data scrub had to
be completed before the data analysis. The parsed data had the
dimensions of 120 columns with 1000s of records. The data
was cleaned to 15 columns and 7081 records. One limitation
with the dataset is that approximately 200 issues were not
included from year 2014 due to GitHub API restrictions
during the data pull.

In this dataset, some key issues tag words include: a)
Refactoring - referring to a technique for restructuring an
existing body of code to support future development and
optimize code readability by altering its internal structure
without changing its external behavior [4], b) Bug - an error in
a Bitcoin development program [4], c) Feature - a unit of
functionality of a software system that satisfies a requirement,
represents a design decision, and provides a potential
configuration option, d) Test - referring to the tasks noted in
the repository to add test cases to the testing plan, or task to
address unsuccessful tests, e) Documentation (doc) - referring
to the tasks of documenting functionality, processes,
knowledge sharing and other aspects of development.

D. ANALYSIS STEPS

Since the research motivation was driven on understanding
the development status, the GQM framework was used to
design research questions and metrics. Analytics on the
discrete dimensions within the dataset were conducted. From
this step of the research, interesting metrics surfaced, such as:
there is a 92.4% refactor rate from refactor request to refactor
completion, the average lifespan of an issue within the
repository is approximately 57 days, there is a 93.5% bug
removal rate, and the average development life cycle of a new
feature issue is 328 days.

The analyses continued using Tableau for data
visualization and knowledge discovering for empirical results
to address the problem statement. More specifically, three
perspectives were investigated: 1) the overall issue distribution
profile in the repository; 2) the top issue trend analysis; 3)
semantic analysis of top issue types. The next section will
present the main empirical results from the study.

III. EMPIRICAL RESULTS

A. Understanding the issue distribution within the repository

Figure 1 illustrates the summary of the number of open and
closed issues in each year across the period of 2010-2018. As
expected, there is a substantial amount of more closed ticket in
each year. Based on the metric analysis, the following overall
profiles have been observed:

● The average lifespan of an issue within the repository
is approximately 57 days;

● There is an 87.5% refactor addressed rate for those
proposed refactor request;

● There is a 93.5% bug removal rate; and
● The average development life cycle of a new feature

issue is 328 days.

Fig.1. Number of Open and Closed Issues by Created Year

A compelling bug resolution is highlighted in the year

2017, with the highest closed issues of 2,280. This correlates
with the time when Bitcoin achieved its peak share price of
approximately $19,343 [8]. The indication is that the testing
and bug resolution effort in 2017 significantly improved the
functionality and performance of Bitcoin system, the more
functioning and reliable Bitcoin system strived to great
financial heights.

Figure 2 displays the most popular issue labels of the total
Bitcoin repository issues. The Top-7 issue labels account for
64.3% of all issues, including: 1) Refactoring for changes
related to code moving, code style fix, and code refactoring to
address evolution needs; 2) Tests for changes to the bitcoin
unit tests or QA tests; 3) Docs for changes to the
documentation; 4) RPC.REST.ZMQ for changes to the RPC,
REST or ZMQ middleware; 5) GUI for changes to the bitcoin
graphical user interface, e.g. bitcoin desktop wallet QT; 6)

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

213

Bug for changes related to bug reporting and tracking; and 7)
Wallet for the development of the Bitcoin wallet feature.

Fig. 2. Issues Label Distribution of All Issues

Table 1 summarizes the distribution of different issue types
in Bitcoin repository. Other issues include more specific areas
of concerns such as build systems, P2P, new feature,
mempool, scripts and tools, validation, consensus, mining, etc.

Table 1. Summary of distribution of top issue labels

Issue Type Label Number of Issues %

Refactoring 528 0.11

Tests 488 0.10

Docs 473 0.10

RPC/REST/ZMQ 402 0.08

GUI 381 0.08

Bug 338 0.07

Wallet 293 0.06

Build system 277 0.06

Others 1611 0.34

Total 4791 1.00

Among the issue labels, Refactoring, Bugs, Tests, and Docs

are some essential software engineering activities for,
representing the application of specific methods, tools in order
to correct code/design, verify correctness of functionalities,
and document important information about the development
processes. One surprising observation is that, as shown in
Table 1, the Docs (i.e. documentation) issues consists of about
10% of all Bitcoin issues, which is large portion of the
development effort, concerning that Bitcoin is development
following agile development and/or open source software
development processes. This indicates that for complex
open/free software like Blockchain, the high priority on
documentation might be one of the success critical factor to
enable effective and consistent communication and exchange
among diverse, cross-disciplinary stakeholders.

B. Top issues trend analysis
To understand the evolution of Bitcoin issue distribution,

we further identified the Top-7 issue labels in each year, as
shown in Figure 3. As expected, many of the most prevalent
issues in each year of development are the issues previously
identified.

Fig. 3. Top 7 issues by year during the development lifecycle

More specifically, the most notable findings are: 1) During

early stage of Bitcoin development (i.e. 2011-2014), more
issues were discussed around brainstorming, documentation,
feature, and GUI; 2) During middle stage (i.e. 2015-2016),
refactoring and tests are placing important roles during the
development process, more discussion focused on Build
system and P2P; and 3) During more recent stage (i.e.
2017-2018), RPC.REST.ZMQ caught more attention than P2P,
since Bitcoin 0.12.0 release introduced major changes of
Random-cookie RPC authentication and notification through
ZMQ. These results provide traces for reverse engineering the
software development processes.

Fig 4 takes the seven selected issue tags and reveals the
trend analysis of the issues quantities. Based on the trend data,
it is shown that the number of issues for documentation and
bugs are just as prevalent from 2015 onwards. The number of
closed feature and GUI issues had a nominal variance
throughout all of the years. In addition, there is a spike in the
total number of the number of closed issues for all issue types.
This can be due to the dataset flaw of minimal missing data
from 2014. The results of the testing issues also showed 2015
to be a monumental year due to continuous testing being
incorporated into the repository. The initial expectation was
that tests would have more issues than refactoring since there
are more test cases to check against compared to the need to

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

214

refactor. Another expected outcome is the number of bug
issues decreasing as the number of test issues increases.
Interestingly, the amount of both the bug issues and the test
issues increase. However, the lower amount of test issues can
be attributed to the developers using a continuous integration
tool, i.e. Travis CI.

Fig. 4. Top-7 issues trend analysis

C. Semantic Analysis of Top Issue Types
1) Top-5 Topics for Top-3 Issue Types
A follow-up topic modeling analysis is conducted on the

top issue types, as discussed in previous subsection A, to gain
understanding of the semantic characteristics of issue
descriptions. We applied the NLTK [1] library to
pre-processing and clean the issue descriptions, and then
conducted Latent Dirichlet Allocation (LDA) analysis using
the gensim library [2].

For each top issue top, we identified the top 5 topics, each
consisting of 5 topic words. For space saving consideration,
we only show the results of topic modeling analysis on the
Top-3 issue types (i.e. refactoring, tests, and doc), as
summarized in Table 2.

Table 2. Illustration of the Top-5 topics

Some topics draw our attention immediately, as we are
manually checking the issue description text. For example,
Topic0 in the “Refactoring” type is a vector of <remove,
commits, unsigned, linux, value>, this corresponds to a set of
refactoring to introduce “an unsigned char which is a
natural/direct representation for values” ranging 0-16, and
remove the need for 2 casts (i.e. BIP 141 and DecodeOP_N) in
script/standard.cpp. Topic2 in the “Refactoring” type is the
vector of <version, time, added, connection, case> indicates
the discussion on handling a special case where a peer is
sending obviously wrong information, and “the big idea is to
punish it by maybe dropping your connection (after certain
time period) to it, and ban it's IP address so it cannot
immediately re-connect”.

Topic0 in the “Tests” category corresponds to the test
assurance of backup certain test files in temp path, so as not to
accidentally “overwrite a random file with the same name that
happens to be in the current directory”. Other topics in this
category capture other testing-oriented keywords including
functional, error, failure, running, check, etc.

Unlike the first two categories, the “Doc” category consists
of works such as script, comment, example, developer, think
which are not directly representing the code itself. However,
these words form more descriptive information regarding the
intermediate development artifacts and programming context.
and are critical for creating shared understanding, problem
solving, and long-term maintenance, which are the critical
success factor for such complex, dynamic collaborative
development projects as Bitcoin.

Although these semantic analysis results are preliminary,
the extraction of the most differentiating topics in each issue
category is very important and critical for developing more
predictive analytics to aid development decision making. For
example, such topics can be used to train predictors for
categorizing the most defective modules/files, or the more
defect-introducing commits in the Bitcoin software; or for
recommending the most relevant developers who have been
working on the most similar bugs to fix a newly opened bug,
and so on.

2) Issue Distribution across Bitcoin Components
The Bitcoin architecture can be viewed as the Bitcoin

Financial System of System [6]. The foundation of the Bitcoin
Network payment processors within this SoS focuses on four
key concepts. The four concepts include: 1) Transactions, 2)
Blocks/Blockchain, 3) Proof of Work, and 4) Protocol [7]. Fig
5 depicts the components which emulates the foundation of
the Blocks/Blockchain concept foundation.

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

215

Fig. 5. Blockchain Data Model Design for Bitcoin [7]

We first identify the main component constructs from the

above Blockchain Data Model (e.g. Blockchain, Block,
Bitcoin Wallet, Transaction, Pool, Node, and Bitcoin, etc.),
and then derive the top-5 topics from issues including these
keywords. Then, we use these keywords to sort out the
selected issue sets into ten subsets according to the above ten
types. Finally, the heat map shows the reported issues count of
the top ten issues with respect to the various Bitcoin
architecture components. Figure 6 illustrates the resultant heat
map.

Fig. 6. Bitcoin component to top ten issues heat map

It is shown that there are some high issues quantities for

the architecture components bitcoin, wallet, transaction,
protocol, and node. Some of the popular issue types for these
components include; tests, docs, RPC/REST/ZMQ, GUI, bug,
and wallet. Fig 6 describes the following results: (1) Most of
the issues in the development of bitcoin have been related to
itself in the past 9 years. (2) Wallet development in the bitcoin
also highlights a number of issues. (3) The middleware (e.g.
RPC, REST and ZMQ) part of the bitcoin has shown many
issues in various aspects in the past. (4) The protocol part of
the bitcoin is very stable and there are not many issues.
Additional empirical results on component level metrics are

derived, as shown in Table 3. These results summarize the
diverse characteristics of issue density, issue open duration,
issue resolution rate, and dominant issue types associated with
different components. It indicates that the component level
issue has different influences on the development productivity
and product quality.

Table 3. Bitcoin Component Metrics Conclusion Summary

 Blockchain Pool Node Bitcoin

of Issues 565 227 137 648

Average
Length of

Issues

95 days 50 days 55 days 78 days

Issues
Resolution

Rate

85.3% 85.9% 81.7% 89.5%

Top-3
issue types

RPC/REST
/ZMQ, P2P,
Refactoring

Mempool,
RPC/REST

/ZMQ, Wallet

Tests,
Refactoring

, P2P

Bug, Tests,
GUI

IV. DISCUSSION

From the overall repository and the component analytics
results, the following conclusions can be drawn:

1. The relatively high refactor rate and refactor addressed
rate from the overall repository analytics tells us that Bitcoin
crypto technology underwent major design and architecture
transformation to support the development of the platform.
With the shortest issues life cycle of the three issue types and
the most pull request percentage, refactoring is highly
regarded within the development process because new
functionality is highly regarded. However, looking at the
analytics from a component point of view, refactoring issues
played a major role for the Blockchain and the node
architecture component development.

2. The relatively high bug removal rate in the repository
tells us that Bitcoin crypto technology is proactive in
addressing bugs to better understand and to overcome the
Bitcoin financial system of systems development challenges.
However, the component analytics confirms that the bug
issues were prevalent in the Bitcoin component development.
With the other components of the Bitcoin architecture being
standard components for other Blockchain products, it is
expected that bug and test issues would be prevalent within
the bitcoin component development.

Some challenges in this study resulted in limitations and
threats to the resulting findings. Because of data acquisition
restrictions, the dataset excludes approximately 3% of the total
issues from the Bitcoin repository. Even though this may
diminish the accuracy of the value of some findings, there is
still some validity to the proportions of the metric results.
Secondly, the limited amount of sources discussing the Bitcoin
architecture limited our architecture knowledge to be
dependent on one source. Another threat to the validity of the

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

216

findings is due to the inconsistency with the issues tags,
description and issues titles of a number of issues within the
repository. Whiles completing the development analytics, we
noticed that a possible source of error is incorrect issues
labeling and issues which were not labeled. One major lesson
that came out of this research project is the importance of
digging deeper for true knowledge discovery.

V. CONCLUSION AND FUTURE WORK

The exploration of Bitcoin began with understanding the
Blockchain technology. That led to understanding the
development of the Bitcoin cryptocurrency through GitHub.
This paper reported the trends of the major development issues
from a longitude perspective. The main results include: 1) the
average lifespan of an issue in Bitcoin issue repository is
approximately 57 days; and 2) the Top-7 issue types including
refactoring, tests, doc, RPC.REST.ZMQ, GUI, bugs, and
wallet, accounting for 64.3% of all issues; 3) topic modeling
techniques are beneficial in mining popularity and evolution
of key issue topics and most problematic architecture
components. Using data analysis and visualization techniques,
this paper suggests the insights for significant development
decisions such as better managing issue repository and
strategic allocating of bug resolution effort.

A next step in this research would be to develop predictive
analytics to improve the effectiveness of issue resolution
process of the Bitcoin development, and to predict
features/issues/refactors that benefit the maximization of
financial value of bitcoin. This paper anchored what can be
further development on as Bitcoin development analytics to
understand the challenges and the development process of the
Bitcoin software.

REFERENCES.

[1] NLTK for Natural language processing: http://www.nltk.org/.
[2] Gensim library: https://pypi.python.org/pypi/gensim.
[3] Laird, L. M., & Brennan, M. C. (2006). Software measurement and

estimation: A practical approach. Hoboken, NJ: John Wiley & Sons. p. 9
[4] Van Solingen, Rini; Egon Berghout (1999). The Goal/Question/Metric

Method. McGraw-Hill Education.
[5] Franco, P. (2014). Understanding Bitcoin: Cryptography, Engineering

and Economics.
[6] Nakamoto, S. (2017). Bitcoin: A Peer-to-Peer Electronic Cash System.

https://www.bitcoin.com/info/what-is-bitcoin-cash
[7] Roth, S. (2015). An Architectural Assessment of Bitcoin Using the

System Modeling Language.
[8] Coindesk price website: http://www.coindesk.com/price/

Proceedings of 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN 2018)

217

